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values of IBI in the non-isomorphous case are much 
smaller than those in the isomorphous case, as is shown 
in Table 2, resulting in the rather poor estimates. Nearly 
half of the seminvariants are incorrectly estimated. This 
implies that the traditional E1 formula is not applicable 
in the macromolecular case and the comparison con- 
firms that the ability to combine direct methods and 
isomorphous replacement is powerful. 

Concluding remarks 

The distribution of Hauptman (1982) employing a 
combination of direct methods and the SIR technique 
has been developed to estimate the values (0 or Jr) of the 
OPSSs. The method proved to be effective with the error- 
free data of a pair of isomorphous structures. No heavy- 
atom information, neither the positions nor the content of 
heavy atoms, is necessary to obtain the estimates of the 
cosine seminvariants but, if the heavy atoms are located, 
better results can be obtained by making use of the 
heavy-atom structure information. The test calculations 
agree with the prediction of Fortier, Weeks & Hauptman 
(1984) that, even when the normalized structure factors 
themselves are small, reliable estimates can be obtained 
provided that the differences beween the structure-factor 
magnitudes of the native protein and the derivative are 
large. 

The method presented here is actually equivalent to 
the ~ 1  formula combining with SIR data and provides a 
supplementary technique of finding individual phases in 
the initial stages of the phasing procedure. An obvious 
practical application lies in the possibility of enhancing 
the starting set in the standard tangent refinement 

by incorporating a number of the OPSSs with high 
reliability. In view of the fact that at least two thirds of 
the OPSSs can be accurately determined for the chosen 
example, it is not unreasonable to expect that the method 
may play a more important role in the solution of 
macromolecular structures than the S'~a formula does in 
the small molecule case. This work also shows that 
Hauptman's distribution is very promising in solving the 
phase problem in the SIR case, although further 
theoretical and experimental studies are needed for 
applying it to unknown structures. 

This work was supported in part by Jilin Aodong 
Pharmaceuticals Ltd. 
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Abstract 

Macroscopic tensorial physical properties that are 
different in two domains of a ferroic crystal provide a 
tensor distinction of the two domains. This tensor 
distinction is determined from a symmetry relationship, 
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called a twin law, between the bulk structures, the 
domain states, of the two domains. The simplest type of 
twin law is the so-called completely transposable twin 
law. We extend here the concept of completely 
transposable twin laws from non-magnetic to magnetic 
completely transposable twin laws. We establish the 
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structure of and tabulate the 380 classes of magnetic 
completely transposable twin laws. The relationship 
between magnetic completely transposable twin laws 
and double antisymmetry groups is then given. Examples 
of the application of magnetic completely transposable 
twin laws are given in the tensor distinction of non- 
ferroelastic magnetoelectric domain pairs. 

1. Introduction 

We consider crystalline domains that arise in a phase 
transition from a high-symmetry phase of symmetry G to 
a low-symmetry phase of symmetry F. We shall refer to 
the bulk structures of these domains in polydomain 
samples as domain  states. Several disconnected domains 
of possibly different shape can have the same domain 
state. Consequently, domain states of a polydomain 
sample represent structures that appear in the sample, 
irrespective of in which domain and irrespective of the 
domain's shape. We are interested in the tensor 
distinction of domains, distinguishing the domains by 
the values of components of macroscopic tensorial 
physical properties. This tensor distinction of domains 
is identical with the tensor distinction of the domains' 
corresponding domain states. Because the domains, 
owing to their shape, are not necessarily symmetry 
related, while their corresponding domain states are, we 
consider, in what follows, the tensor distinction of 
domain states. As we shall consider macroscopic 
tensorial physical properties, we shall use the continuum 
description of the domain states and our symmetry 
analysis will be based on point-group considerations 
only. 

Two domain states S i and Sj form a domain pair {Si, Sj} 
(Janovec, 1972). We shall call the twin law of the domain 
pair {S i, S/} that symmetry information that specifies the 
point groups of the two domain states S i and Sj and their 
relationship. The symmetry information is provided for 
by the point group F/, the point group of the domain state 
S i, and the element gi/, called the twinning operation, 
which transforms the domain state Si into the domain 
state Sj, i.e. gijSi = Sj.  The  point group of the domain 
state Sj is given by Fj = gijFig:~ 1 and the relationship 
between the domain states is given by the twinning 
operation gi/. 

The twin law of a domain pair can alternatively be 
given by a group J = (Fi, gij), the group generated by the 
group F i and the twinning operation gij. In its simplest 
form, the twin law is of the form 

J - (Fi, gij) = Fi + gi/Fi, (1) 

where J consists of only two cosets of the point group F i. 
In this case, the twin law is referred to as a completely 
transposable twin law (Janovec, Litvin & Richterova, 
1994). This is referred to as a transposable twin law [this 
was previously referred to as an ambivalent twin law 
(Janovec, 1981)] as the twinning operation g i / n o t  only 

transforms the domain state S i into Sj but in addition 
transforms the domain state Sj into Si, i.e. 

Sj = gijSi and Si = gijSj. 

This is referred to as a completely transposable twin law 
because, in addition to being transposable, the point 
groups of the two domain states S i and Sj are identical 
that is 

Fj =- gijFigi-~ 1 = F i. 

A ferroic phase is non-ferroelastic if all the domains 
have the same (zero) spontaneous deformation (Aizu, 
1973). In a non-ferroelastic phase, there are n = IGI/IFI 
domain states where [G[ and [FI denote the order of the 
groups G and F, respectively, which are all related by the 
coset representatives of the coset decomposition of G 
with respect to F. The twin laws of non-ferroelastic 
domain pairs are of the form (1), i.e. are completely 
transposable twin laws (Janovec, Richterova & Litvin, 
1993). 

In a ferroelastic phase, the orientations of the domain 
states are controlled by disorientations, i.e. rotations of 
single domain states (domain states invariant under F or 
any conjugate subgroup of F in G) needed to achieve a 
coherent interface of two ferroelastic domain states along 
a planar wall. Consequently, the number of domain states 
in a ferroelastic phase is, in general, greater than 
n = I G I / I F I  and the twin law of a ferroelastic domain 
pair is, in general, not a completely transposable twin law 
(Janovec, Litvin & Richterova, 1994). 

The tensor distinction of two domain states of a 
domain pair can be determined from the domain pair's 
twin law. The form T i of a tensor T in the domain state S i 
is determined by the point group F i and the form Tj of the 
tensor T in the domain state Sj can be determined by 
transforming T i by gij: 

Tj  - -  gijTi.  (2) 

By comparing the forms T i and Ty related by (2), one 
determines the components of the tensor T that are 
distinct in the two domain states, i.e. one determines the 
tensor distinction of the domain pair {S i, S/}. 

Non-magnetic completely transposable twin laws, (1), 
can be written as 

J = F + g'F,  (3) 

where J is a non-magnetic point group (i.e. a point group 
belonging to one of the 32 classes of crystallographic 
point groups) and the element g has been given an 
asterisk to denote and emphasize that this is an element 
of J that transposes the two domain states. The non- 
magnetic completely transposable twin law is uniquely 
characterized by the point group J and a subgroup F of 
index 2 of J. Consequently, the mathematical structure of 
non-magnetic completely transposable twin laws is the 
same as that of dichromatic (black and white, anti- 
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symmetry) point groups (Heesch, 1930; Shubnikov, 
1951). Completely transposable non-magnetic twin laws 
have been used in determining the macroscopic tensorial 
physical properties that distinguish domains of a domain 
pair in the cases of non-ferroelastic and ferroeleclric non- 
ferroelastic domains (Janovec, Richterova & Litvin, 
1992, 1993). 

In §2, we extend the concept of completely transpos- 
able twin laws from that of non-magnetic completely 
transposable twin laws to magnetic completely transpos- 
able twin laws, i.e. to the case where in (1) J is a 
magnetic point group. The structure of magnetic 
completely transposable twin laws is then considered, 
two types of notation are introduced and all classes of 
magnetic completely transposable twin laws are then 
derived. In §3, we discuss the application of magnetic 
completely transposable twin laws in determining the 
tensor distinction of non-ferroelastic magnetoelectric 
domain pairs. It is shown in Appendix 1 that the 
mathematical structure of magnetic completely transpos- 
able twin laws is the same as that of the so-called double 
antisymmetry groups introduced by Zamorzaev & 
Sokolov (1957), see also Zamorzaev (1976) and 
Zamorzaev & Palistrant (1980). A third type of notation 
is introduced there for magnetic transposable twin laws 
based on the notation used for double antisymmetry 
groups. 

In the remainder of this paper, for typographical and 
linguistic simplicity, we shall refer to completely 
transposable twin laws simply as twin laws. 

2. Magnetic twin laws 

Let J denote a magnetic point group, i.e. a point group 
belonging to one of the 122 classes of crystallographic 
magnetic point groups (Opechowski, 1986). Let F denote 
a subgroup of index two of J. A magnetic twin law, 
J = F + g 'F,  with a magnetic point group J, is uniquely 
characterized and can be denoted, in a double-group 
notation, by J[F]. A second single-group notation for a 
magnetic twin law can be obtained by using the 
Hermann-Mauguin (International) notation for the mag- 
netic group J. Individual symbols in the group symbol of 
J representing elements of J not contained in F have 
asterisks. For example, the magnetic twin laws 
2Jm'z = 2z + m'z*2z and 4'zm~mxy = m)rn~2~ + 4'z*m)na~2 z 
are denoted in the double-group notation J[F] as 
2z/m~[2z] and 4~m~m~y[m~m~2z], respectively, and in the 
single-group notat ion as 2z/re'z* and 4'z*m'm~y, respec- 
tively. 

The equivalence of two magnetic twin laws is defined 
as follows: Two magnetic twin laws Jl[F1] and J2[F2] are 
said to be equivalent and belong to the same class of 
magnetic twin laws if there exists a Euclidian transfor- 
marion that simultaneously transforms J1 into J2 and F 1 
into F 2. 

To derive the number of classes of magnetic twin laws 
J[F], we first introduce a notation for non-magnetic point 
groups and the more detailed notation for the magnetic 
point groups. We denote a non-magnetic point group by 
Q. There are three types of magnetic point group: 

(1) J = Q. There are 32 such classes. These are the 32 
classes of crystallographic non-magnetic point groups. 

(2) J = QI' .  There are 32 such classes. These are 
direct products of a non-magnetic point group Q and the 
group 1' consisting of the identity 1 and time inversion 
1 t . 

(3) J = H + a'H. There are 58 such classes. Magnetic 
groups of this type are also denoted by Q(H), where 

Q = H + a H .  

All magnetic groups J = Q, J = QI' ,  and J = Q(H) are 
said to belong to the same family of the class of the non- 
magnetic point group Q. Consequently, all 122 classes of 
magnetic point groups can be categorized according to 
their family into 32 families. 

In deriving the magnetic twin laws J[F], one finds that 
it is advantageous to subdivide the derivation according 
to the type of magnetic point group J: 

(1) J = Q. F must then be a subgroup H of index 2 of 
the non-magnetic point group Q. The twin law is then of 
the type J[F] = Q[H], i.e. a non-magnetic twin law, 
which, in the format of equation (1), is written as 
Q = H + a*H. The number of classes of magnetic twin 
law Q[H] is the same as the number of classes of 
magnetic point groups Q(H), that is 58. For example, for 
Q=2x2y2 z and H = 2  z, we have the twin law 
2x2y2 z = 2 z + 2* 2 z, which is denoted by 2~2y2z[2z] or 
2x*2;2z. 

(2) J = QI'.  There are three possibilities for F: 
(i) If F = Q then the twin law is J[F] = QI'[Q] and 
J = Q + I'*Q = QI'*. The number of classes of mag- 
netic twin law QI'[Q] is the same as the number of 
classes of magnetic point groups QI' ,  that is 32. For 
example, for Q = 2x2y2z, we have the twin law 
2~2y2zl' -- 2x2y2 z + 1"2~2y2 z, which is denoted by 
2x2y2zl'[2x2y2z] or 2x2y2zl'*. 
(ii) If F = HI' ,  where H is a subgroup of index 2 of Q, 
then the twin law is J[F] = QI'[HI'].  Since 

J = HI '  + a 'H1 '  = (H + a 'H)1'  

and H + a*H is a non-magnetic twin law Q[H], the 
above type of magnetic twin law can be denoted by 
Q[H]I' .  The number of classes of such magnetic twin 
laws is the same as the number of classes of twin laws 
Q[H], that is 58. For example, for Q = 2x2y2 z and 
H = 2 z, we have the twin law 2x2y2z1' = 2z1' + 2~'2z1', 
which is denoted by 2~2y2zl [2zl ] or 2~'2~2zl. 
(iii) If F = Q(H), then the magnetic twin law is 
J[F] = QIt[QOH)] and 

J = Q(H) + I'*Q(H) = Q(H)I'*. 

The number of classes of such magnetic twin laws is the 
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same as the number of classes of magnetic point 
groups Q(H), that is 58. For example, for Q = 2~2y2~ 
and H = 2  z, we have the twin law 2~2.2z1"= 
2'~2'y2 z + l'*2'x2'y2~, which is denoted by 2~2y2zl'(2;x2'y2 z] 
or 2'x2'y2zl'*. 

(3) J = Q(H). There are two possibilities for F: 
(i) F = H. The magnetic twin law is Q(H)[H] and 

j = n + a'*a. 

The number of classes of such magnetic twin laws is the 
same as the number of classes of magnetic point groups 
Q(H), that is 58. For example, for Q = 2~2y2 z and 

" ' '2  ' "'*2 which H = 2_, we have the twin law 2'x2, z = 2z 1- ~,~ z, " 
is denoted by 2'~2'y2z[2 z] or 2~'2y2 z. 
(ii) F ~ H. The magnetic twin law is Q(H)[K(R)], where 
K(R) is a magnetic subgroup of index 2 of Q(H) and 

l*  J = R + a ' i R + a ~ R  + a  3 R. 

K = R + aiR and H = R + aER are subgroups of index 
2 of Q. R is a subgroup of index 2 of both H and K and a 
subgroup of index 4 of Q. There are 116 classes of 
magnetic twin laws Q(H)[KOR)]. For example, for 
Q - - 2 x 2 y 2  z, H - - 2  z, K -  2 x and Q -  1, we have the 
twin law 2'x2'y2 z = 2'x + 2z*2'x (= 1 + 2'xl + 2z*l + 2yl), 
which is denoted by L2'r2z[2'~] or 2'~2~'2". 

There are then six types of magnetic twin laws J[F] 

(1) Q[H] (2) QI'[Q] = QI'* 

(3) QI '[HI ']  = Q[H]I' (4) QI'[Q(H)] = Q(H)I'* (4) 

(5) Q(H)[H] (6) Q(H)[K(R)] 

and a total of 380 classes of magnetic twin laws.i" The 
magnetic twin laws can be classified into 32 families 
according to the family of the magnetic group J. A 
representative magnetic twin law of each class of 
magnetic twin laws belonging to the family of 
Q = 222 is given in Table 1. The numbers assigned to 
each magnetic twin law consist first of the serial number 
given to the magnetic twin law's family followed by a 
decimal point and the serial number of the class of the 
magnetic twin laws in that family. This is followed, in 
parentheses, by a number denoting the type of magnetic 
twin law, see equation (4). In the first column is the 
symbol for the magnetic twin law in double-group 
notation followed in the second column with the 
corresponding single-group notation. In the third column 
is a third notation based on the notation for the six types 
of twin law given in equation (4) and the symbols that 
denote double antisymmetry groups. This third notation 
and the relationship between the magnetic twin laws 
derived in this section and the double antisymmetry 
groups is given in Appendix 1. 

~f The complete tables have been deposited with the IUCr (Reference: 
CR0489). Copies may be obtained through The Managing Editor, 
International Union of Crystallography, 5 Abbey Square, Chester CH1 
2HU, England. 

Table 1. Representative magnetic twin laws o f  classes 
belonging to the family o f  Q = 222 

The type of magnetic twin law is given, in parentheses, following the 
magnetic twin law's serial no. Three symbols are given, the double- 
group symbol J[F], the single-group symbol and the corresponding 
double antisymmetry group symbol. 

(6) 222 
6.1(1) 2x2y2z[2 ~ ] 2~,2y 2z 
6.2(2) 2x2y2~ l'[2x2~,2z] 2x2y2fl'* 
6.3(3) 2x2y2z 1'[2 z 1'] 2"2"2 z 1' 

, , , ~ 2t2 1 t* 6.4(4) 2x2y2 z 1 [2~2~,2z] - x - y - z -  

6.5(5) 2'x2ty2,[2~] 2~2~.'2z 
6.6(6) 2'x2ty2,[2tx] -x-y~t2g~*-z 

2x2y2z{2z] 
2xe,2zl" 
2x2,2z12zll' 
2x2y2,(2,)l" 
2~2,2z(2,){2,] 
2x2y2,(2,)t2x(1)} 

3. Tensor distinction 

We consider the tensor distinction of a non-ferroelastic 
magnetoelectric domain pair (Litvin, Janovec & Litvin, 
1994). In such domain pairs, the domains states S i and Sj 
have the same (zero) spontaneous deformation and their 
magnetic twin laws J = F + g*F are completely trans- 
posable. We denote a physical property tensor by T and 
the form of this tensor in the two domain states S i and S j, 
respectively, by T i and Tj. The components of the 
tensor T i will be denoted by T7/3y. 

The types of physical property tensors considered are 
denoted by symbols for their transformational properties. 
Each symbol consists of the symbol V n, which denotes 
the nth product of a polar vector tensor, possibly 
preceded by a and/or e, symbols that denote rank-zero 
tensors that chat]_ge sign under time inversion 1' and 
spatial inversion 1, respectively. The physical meaning of 
many types of these tensors is given by Sirotin & 
Shaskolskaya (1975). We list eight tensor types in the 
first column of Table 2. 

We consider a domain pair related by the magnetic 
twin law J[F] = 4~2'x2~y[4~], i.e. by the twin law 
4z2'x2~y = 4 z -t- 2~'4r In this case, the point group of the 
domain S i is F = 4 z and the domain Sj is related to the 
domain S i by the element 2'~, i.e. Sj = 2'xS i. Conse- 
quently, the form of the tensor T i is invariant under the 
point group 4 z and the form of the tensor Tj is related to 
the form of the tensor T i by the dement 2~, i.e. Tj = 2~T i. 
The form of non-magnetic physical property tensors 
invariant under non-magnetic point groups for a wide 
variety of tensor types can be found in Sirotin & 
Shaskolskaya (1975). The same tables can also be used 
to determine the form of a magnetic physical property 
tensor invariant under magnetic point groups (Litvin, 
1994). For the magnetoelectric effect tensor, a tensor of 
the type aeV 2, the form of the tensor T i, invariant under 
4 z is (a 0) 

r~ ~--  - C  A 0 . 
0 0 B 
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Table 2. For the magnetic twin law J[F] = 4z2'x2~y[4z] 
and the eight types of  tensors listed in the first column, 
the forms of  the tensors T i and Tj -- 2"T i are given in the 

second and third columns, respectively 

The tensor notation used is that of  Sirotin & Shaskolskaya (1975). 

Tensor Domain state Si Domain state Sj 
t ype  T, Tj 

V 0 0 
o 0 
A - A  

aeV 0 0 
0 0 
A A 

[V 2] A 0 0 A 0 0 
0 A 0 0 A 0 
0 0 B 0 0 B 

aeV 2 A C 0 - A  C 0 
- C  A 0 - C  - A  0 

0 0 B 0 O - B  

V[V 2] 0 0 0 B A 0 0 0 0 B - A  0 
0 0 0 A - B  0 0 0 O - A - B  0 
C C D 0 0 0 - C - C - D  0 0 0 

aeV[V 2] 0 0 0 B A 0 0 0 O - B  A 0 
0 0 0 A - B  0 0 0 0 A B 0 
C C D 0 0 0 C C D 0 0 0 

W 3] 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 
A A B -A  -A  - B  

ae[V 3] 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 
A A B A A B 

The form of the tensor Tj = 2"T i is calculated via the 
standard transformation of a second-rank tensor 

Tj '~ = -D'-(2x)~,~,D'-(2x)a~,Ti e/r, 

where the additional minus sign is present since the 
tensor type is aeV 2, which changes sign under time 
inversion and g* = 2' is a primed element. The form of 
the tensor Tj is then (a 0) 

Tj '~ = - C  - A  0 . 
0 0 - B  

The two domains can be distinguished by the T x~, T yy 
and T zz components of the magnetoelectric effect tensor. 

In the second and third columns of Table 2, we give 
the component forms of the tensors T i and Tj for the 
tensor types listed in the first column. By comparing the 
forms of the tensors in the two domains of the domain 
pair related by this magnetic twin law, we have that five 
tensor types distinguish between the two domains and 
three do not. 

This domain pair is magnetoelectric as the form of the 
magnetoelectfic effect tensor (a tensor of type aeV 2) is 
different in the two domains and non-ferroelastic as the 
ferroelasticity effect tensor (of the type [V2]) is identical 
in the two domains. From Table 2, we have that the 
domains of this domain pair can also be distinguished by 

spontaneous polarization (V), piezoelectric and second 
non-linear magnetoelectric tensors (V[V2]), piezomag- 
netic and first non-linear magnetoelectric tensors 
(aeV[V2]) and non-linear electric tensors ([V3]). [See 
Schmid (1975) for a complete discussion of these 
magnetoelectric phenomena.] The domains cannot be 
distinguished by spontaneous magnetization (aeV), their 
electric and magnetic susceptibility ([V2]) or by their 
non-linear magnetic susceptibility (ae[V3]). 
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and INT-8922251 and by the Grant Agency of the 
Academy of Sciences of the Czech Republic under grant 
no. 11074. One of us (DBL) gratefully acknowledges the 
hospitality extended during a sabbatical visit to the 
Institute of Physics of the Academy of Sciences of the 
Czech Republic. 

APPENDIX 1 
Double antisymmelry groups 

The magnetic twin laws, derived in §2, have the same 
mathematical structure as the double antisymmetry point 
groups introduced by Zamorzaev & Sokolov (1957). 
Double antisymmetry point groups can be defined as 
follows. All points of a f'mite object are assigned two 
signs, each of which can be a positive or negative sign. In 
addition to the point-group transformations of the 
unsigned object, one defines transformations of the 
signs, a transformation 1' that reverses the value of the 
first sign and 1" that reserves the value of the second 
sign. [In Zamorzaev & Sokolov (1957), the star is placed 
to the left of the symbol, i.e. * 1.] A double antisymmetry 
group is an invariance group of such a signed finite 
object, the group of those point-group transformations 
and point-group transformations coupled with 1', 1" or 
1'* that leave the signed finite object invariant. Of the 
twelve types of double antisymmetry point groups, six 
correspond to the six types of magnetic twin laws. Listed 
in order corresponding to the types of magnetic twin laws 
given in equation (4), these are: 

(1) Q{H} (2) QI'* 
(3) Q{H}I' (4) Q(H)I'* (A1) 

(5) Q(H){H} (6) Q(H){K} = Q(H){K(R)}. 

Q denotes a point group and H and K subgroups of index 
2 of Q. R is a subgroup of index 2 of both H and K and a 
subgroup of index 4 of Q. 

Q{H} denotes a group where the elements of Q not 
contained in the subgroup H are coupled with 1". Q(H) 
denotes a group where the elements of Q not contained in 
the subgroup H are coupled with 1'. Q(H){K} denotes a 
group where the elements of Q not contained in H are 
coupled with 1' and the elements of Q not contained in K 
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are coupled with 1". In groups Q(H){ H }, the elements of 
Q not contained in H are coupled with 1'*. In groups 
Q(H){K }, with H # K, there are elements of Q coupled 
with 1', coupled with 1" and coupled with 1'*. Those 
elements of Q not coupled with any of these constitute a 
subgroup R which is a subgroup of index 2 of both H 
and K, and a subgroup of index 4 of Q. Elements of K 
that are not in R are coupled with 1' and consequently 
double antisymmetry point groups of this type can be 
denoted by Q(H){ KOR)}. The mathematical equivalence 
of the magnetic twin laws given in equation (4) with the 
double antisymmetry groups listed in equation (A1) can 
now be easily seen: One can interchange the correspond- 
ing types of magnetic twin laws and double antisym- 
metry groups by interchanging the square brackets [] 
with the curly brackets { }. In the third column of 
symbols in Table 1, we give the double antisymmetry 
group symbol, equation (A1), of each of the listed 
magnetic twin laws. 
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Abstract  

The use of a crenel function, i.e. a difference between 
two Heaviside functions of amplitude 1, for strong 
occupation modulation waves and its influence on the 
refinement of accompanying displacive modulation 
waves is discussed. The basic set of harmonic functions 
that is usually employed for the modelling of the 
displacive modulation wave is no longer orthogonal on 
the interval where the crenel function takes the value 1. 
This causes severe correlations between different dis- 
placive modulation amplitudes during ref'mement. The 
best solution to prevent these correlations is to select 
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functions for inclusion in the refinement according to the 
criterion that their generalized cosine to the subspace of 
already selected functions has to be smaller than a certain 
threshold value. A quality-of-selection parameter is used 
to estimate the completeness of the selected functions. 
Finally, the selected functions are orthogonalized. One 
artificial illustration and one real example are given to 
demonstrate the use and application of the proposed 
methods. 

Introduct ion  

The theory of (3 + d) superspace groups, introduced by 
de Wolff  (1974, 1977), Janner & Janssen (1977) and de 
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